Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.435
Filtrar
1.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581962

RESUMO

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Assuntos
Quitosana , Colagem Dentária , Humanos , Dentina/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Hidroxiprolina , Adesivos Dentinários/química , Água/metabolismo , Resistência à Tração
2.
Mymensingh Med J ; 33(2): 605-612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557547

RESUMO

Accomplishment of an ideal root canal treatment is attributed to various essential factors such as proper instrumentation, chemomechanical preparation, obturation and post endodontic restoration. The main aim of this study is to test the null hypothesis that is the moisture condition of root dentin would not affect the bond strength and sealer penetration. This is an in vitro study conducted in Department of Conservative Dentistry and Endodontics, M A Rangoonwala Dental College, Pune, India over a period of two years (from 2021 to 2023). One hundred and twenty single-rooted Premolars with fully formed apices and similar root morphology were obtained and stored in 0.1% thymol solution. The specimens were randomly assigned to 3 broad experimental groups (n=40) according to the drying protocol such as Group A- Paper points (P), Group B- diode laser (L) and Group C- isopropyl alcohol (A). For each drying protocol, the specimens were further assigned to 2 subgroups (n=20) with respect to the sealers used: AH Plus (AH) and Apexit Plus sealers (APx). The effect of drying protocol using paper points, isopropyl alcohol and diode-lasers on the bond strength and tag penetration of two different sealers to the root dentin was evaluated. Maximum overall push-out Bond strength was seen in group AH+L and least in group APx+ L. Inter-site push-out bond Strength was highest in the coronal third followed by the middle and least in the apical third of all the groups. Maximum over all depth of penetration was seen in group AH+L and minimum in group APx+L. AH plus sealer showed better bond strength, sealer penetration and adaptation to the dentinal walls compared to Apexit plus sealer, irrespective of the drying protocol followed. All the drying protocols used did not show statistically significant results in the apical thirds of root canals of all the groups.


Assuntos
Hidróxido de Cálcio , Materiais Restauradores do Canal Radicular , Humanos , Materiais Restauradores do Canal Radicular/análise , Materiais Restauradores do Canal Radicular/química , Resinas Epóxi/análise , Resinas Epóxi/química , 2-Propanol/análise , Índia , Dentina/química
3.
Sci Rep ; 14(1): 7087, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528204

RESUMO

To evaluate the efficiency and effectiveness of three minimally invasive (MI) techniques in removing deep dentin carious lesions. Forty extracted carious molars were treated by conventional rotary excavation (control), chemomechanical caries removal agent (Brix 3000), ultrasonic abrasion (WOODPECKER, GUILIN, China); and Er, Cr: YSGG laser ablation (BIOLASE San Clemente, CA, USA). The assessments include; the excavation time, DIAGNOdent pen, Raman spectroscopy, Vickers microhardness, and scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM-EDX). The rotary method recorded the shortest excavation time (p < 0.001), Brix 3000 gel was the slowest. DIAGNOdent pen values ranged between 14 and 18 in the remaining dentin and laser-ablated surfaces recorded the lowest reading (p < 0.001). The Ca:P ratios of the remaining dentin were close to sound dentin after all excavation methods; however, it was higher in the ultrasonic technique (p < 0.05). The bur-excavated dentin showed higher phosphate and lower matrix contents with higher tissue hardness that was comparable to sound dentin indicating the non-selectiveness of this technique in removing the potentially repairable dentin tissue. In contrast, the MI techniques exhibited lower phosphate and higher organic contents associated with lower microhardness in the deeper dentin layers. This was associated with smooth residual dentin without smearing and patent dentinal tubules. This study supports the efficiency of using MI methods in caries removal as conservative alternatives to rotary excavation, providing a promising strategy for the clinical dental practice.


Assuntos
Cárie Dentária , Lasers de Estado Sólido , Humanos , Dentina/química , Suscetibilidade à Cárie Dentária , Dureza , Fosfatos/análise , Cárie Dentária/cirurgia , Cárie Dentária/patologia
4.
Sci Rep ; 14(1): 6315, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491076

RESUMO

The aim was to investigate the influence of endodontic irrigation solutions and protocols on the micro-tensile bond strength (µTBS) to dentin using an etch-and-rinse (ER) or self-etch (SE) adhesive approach. Eighty extracted human molars were ground to dentin. After pretreating for 27 min (21 min-3 min-3 min) with five different endodontic irrigation protocols (Group 1: NaOCl-EDTA-NaOCl; Group 2: NaOCl-NaOCl-EDTA; Group 3: NaOCl-NaCl-NaOCl; Group 4: Dual Rinse-Dual Rinse-Dual Rinse; Group 5: NaCl-NaCl-NaCl), an ER (Optibond FL, Kerr) or a SE (Clearfil SE Bond, Kuraray) adhesive system was applied. After light-curing, composite build-ups were made and cut into dentin-composite sticks. µTBS and failure modes were analyzed. Nonparametric statistical analyses (α = 0.05) were performed for comparison of the five groups within each type of adhesive as well as between the two adhesive systems used. The use of an ER instead of a SE adhesive system resulted in significantly higher µTBS for all irrigation protocols except for group 1 (NaOCl-EDTA-NaOCl) and 2 (NaOCl-NaOCl-EDTA). A statistical difference between the five different endodontic irrigation protocols was only found within the SE adhesive group, where group 1 (NaOCl-EDTA-NaOCl) achieved highest values. The use of an ER adhesive system cancels out the effect of the endodontic irrigation solution. The highest µTBS was achieved when using a NaOCl-EDTA-NaOCl-irrigation protocol in combination with Clearfil SE Bond, which shows that the selection of the endodontic irrigation should match the corresponding SE adhesive system.


Assuntos
Cloreto de Sódio , Hipoclorito de Sódio , Humanos , Ácido Edético/farmacologia , Ácido Edético/química , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/química , Cloreto de Sódio/farmacologia , Dentina/química , Adesivos Dentinários/química , Teste de Materiais , Resistência à Tração
5.
Dent Mater ; 40(4): 593-607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365457

RESUMO

OBJECTIVES: A calcium phosphate extracted from fish bones (CaP-N) was evaluated for enamel remineralization and dentinal tubules occlusion. METHODS: CaP-N was characterized by assessing morphology by SEM, crystallinity by PXRD, and composition by ICP-OES. CaP-N morphology, crystallinity, ion release, and pH changes over time in neutral and acidic solutions were studied. CaP-N was then tested to assess remineralization and dentinal tubules occlusion on demineralized human enamel and dentin specimens (n = 6). Synthetic calcium phosphate in form of stoichiometric hydroxyapatite nanoparticles (CaP-S) and tap water were positive and negative controls, respectively. After treatment (brush every 12 h for 5d and storage in Dulbecco's modified PBS), specimens' morphology and surface composition were assessed (by SEM-EDS), while the viscoelastic behavior was evaluated with microindentation and DMA. RESULTS: CaP-N consisted of rounded microparticles (200 nm - 1 µm) composed of 33 wt% hydroxyapatite and 67 wt% ß-tricalcium phosphate. In acidic solution, CaP-N released calcium and phosphate ions thanks to the preferential ß-tricalcium phosphate phase dissolution. Enamel remineralization was induced by CaP-N comparably to CaP-S, while CaP-N exhibited a superior dentinal tubule occlusion than CaP-S, forming mineral plugs and depositing new nanoparticles onto demineralized collagen. This behavior was attributed to its bigger particle size and increased solubility. DMA depth profiling and SEM showed an excellent interaction between the newly formed mineralized structures and the pristine tissue, particularly at the exposed collagen fibrils. SIGNIFICANCE: CaP-N demonstrated very good remineralizing and occlusive activity in vitro, comparable to CaP-S, thus could be a promising circular economy alternative therapeutic agent for dentistry.


Assuntos
Dentina , Hidroxiapatitas , Remineralização Dentária , Animais , Humanos , Dentina/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Esmalte Dentário , Cálcio/análise , Durapatita/farmacologia , Durapatita/química , Colágeno
6.
Dent Mater ; 40(4): e12-e23, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368137

RESUMO

OBJECTIVE: this study evaluated dentin microtensile bond strength (µTBS) and failure modes (at 24 h and one year), bonding interface regarding hybridization, surface morphology regarding demineralization, in situ metalloproteinase (MMP) activity, and antibacterial effect of three dentin etchants compared to 35% phosphoric acid (PA). MATERIALS AND METHODS: The Adper Single Bond 2 adhesive (3 M Oral Care) was applied on moist dentin etched with PA (control) or on air-dried dentin etched with 3% aluminum nitrate + 2% oxalic acid (AN), 6.8% ferric oxalate + 10% citric acid (FO), or 10% citric acid (CA). The µTBS test used 40 human teeth (n = 10). Failure modes and surface morphology were analyzed by scanning electron microscopy (n = 3), while bonding interface morphology and MMP activity were evaluated by laser scanning confocal microscopy (n = 3). Antibacterial activity was evaluated against S. Mutans biofilm by means of viable cells count (CFU/mL). RESULTS: PA presented the highest bond strengths regardless of aging time. PA, AN, and CA showed stable bond strengths after one year of storage. Adhesive and mixed failures were predominant in all groups. Thin hybrid layers with short resin tags were observed for the experimental etchants. The AN-based etchant was able to inhibit MMP activity. All tested etchants presented antibacterial activity against S. Mutans biofilm. SIGNIFICANCE: This study suggests different dentin etchants capable of inhibiting MMP activity while also acting as cavity disinfectants.


Assuntos
Resinas Compostas , Colagem Dentária , Compostos Férricos , Humanos , Resinas Compostas/química , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química , Cimentos de Resina/farmacologia , Cimentos de Resina/química , Microscopia Eletrônica de Varredura , Dentina/química , Ácido Cítrico/farmacologia , Antibacterianos/farmacologia , Resistência à Tração , Teste de Materiais
7.
Micron ; 179: 103608, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354449

RESUMO

Research on the structure and chemical composition of dental tissues allows for the optimisation of materials used in the treatment and care of teeth. Understanding pathological processes occurring in dental tissues and their reactions to various substances, including dental materials, are crucial for the development of new dental technologies. The aim of the study was to check the similarities in the chemical and morphological structure of enamel and dentine powders in various groups of permanent teeth, as well as differential chemical analysis for both grinded tissues tested. The extracted non-carious and non-pathological human permanent teeth were divided into four groups: incisors, canines, premolars and molars. Each tooth was sectioned to thick slices. Enamel and dentine were mechanically separated and ground in an agate mortar and pestle. FT-Raman and FTIR spectroscopy methods were used for the analysis of biological tissues. SEM method was applied to visualise hard dental tissues structures present on the surface and within the particles. The morphological structures were the same within the analysed tissues and did not depend on the analysed group of teeth. A comparison of the mineral-to-organic ratios of enamel and dentine in each tooth group showed that the bands related to PO43- were clearly higher in content for enamel than for dentine. Higher absorbance measured at the region of 2800-3700 cm-1 and at 1500-1800 cm-1 for dentine as compared to enamel samples were indicative of a higher content of organic structures. The highest contribution of phosphates was in canine enamel samples.The studies showed that the carbonate-to-phosphate ratio was higher for dentine (0.20 - 0.48) compared to the values obtained for enamel (0.13 - 0.22), however, minor differences were found in each group of enamel or dentine samples. The lack of significant differences between the enamel and dentine powders of incisors, canines, premolars and molars may prove that each extracted tooth, regardless of the tooth group, is an excellent substrate for their substitution.


Assuntos
Dentina , Dente Molar , Humanos , Dentina/química , Esmalte Dentário
8.
Photodiagnosis Photodyn Ther ; 45: 103981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242188

RESUMO

AIMS: Evaluation of the effects of the latest root canal disinfectants i.e., Micro-bubble emulsion (MBE), Neodymium-doped yttrium aluminum perovskite (Nd: YAP), Emblica officinalis (E. officinalis) on the removal of smear layer (SL) and push out bond strength (PBS) of resin-based root canal sealer to the radicular dentin. METHODS: The coronal portion of sixty single-rooted human mandibular premolar teeth was precisely sectioned at the cementoenamel junction. The canals were prepared to utilize ProTaper universal rotary files till F3. All the study specimens were divided into four groups based on the disinfection regime (n = 15) Group 1: 5.25% NaOCl, Group 2: MBE, Group 3: Nd: YAP laser and Group 4: E. officinalis extract. All the canals were then finally irrigated using 17% EDTA solution as a final disinfecting agent. SL removal assessment was performed on five samples from each group using a scanning electron microscope (SEM). Ten samples from each group were then filled with root canal filling material and the roots were sectioned. Push-out test and failure mode analysis were performed using the universal testing machine (UTM) and stereomicroscope respectively. The mean scores of PBS and SL removal were compared using a one-way analysis of variance (ANOVA) and Post Hoc Tukey's HSD test p = 0.05. RESULTS: Group-2 (MBE + EDTA) coronal section (1.50 ± 0.23) exhibited the most effective eradication of SL from the canal space. The apical third of Group-1 (NaOCl+EDTA) (2.68 ± 0.82) samples demonstrated the least effective removal of SL from the radicular canal. The maximum score of PBS of AH plus sealer to the canal dentin was exhibited by the coronal section of Group-2 (MBE + EDTA) (9.55 ± 0.45 MPa) samples. However, the apical third of Group-1 (NaOCl+ EDTA) specimens (5.16 ± 0.32 MPa) demonstrated the minimum EBS. CONCLUSION: MBE+ EDTA displayed better smear layer removal and bond integrity of AH plus sealer to the root canal dentin. Nd: YAP+ EDTA laser and E.officinalis displayed comparable outcomes to that of control NaOCl+ EDTA.


Assuntos
Fotoquimioterapia , Phyllanthus emblica , Camada de Esfregaço , Humanos , Resinas Epóxi , Desinfecção , Ácido Edético , Emulsões , Cavidade Pulpar , Dentina/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Lasers
9.
J Mech Behav Biomed Mater ; 152: 106407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277911

RESUMO

OBJECTIVE: To evaluate the effect of a Nisin-based dentin pretreatment solution on microtensile bond strength, antibacterial activity, and matrix metalloproteinase (MMP) activity of the adhesive interface. MATERIALS AND METHODS: 100 human molars were sectioned to expose dentin. The teeth were assigned to five groups (n = 20), according to the dentin pretreatment: 0.5%, 1.0%, or 1.5% Nisin; 0.12% chlorhexidine (positive control), and no solution (negative control), and divided into 2 subgroups: no aging, and thermomechanical aging. Specimens were etched with 37% H3PO4 for 15 s and submitted to the dentin pretreatment. Then, they were bonded with an adhesive (Adper Single Bond 2) and a resin composite for microtensile bond strength (µTBS) evaluation. Antibacterial activity against Streptococcus mutans was qualitatively examined using an agar diffusion test. Anti-MMP activity within hybrid layers was examined using in-situ zymography. Data were analyzed with two-factor ANOVA and post-hoc Tukey's test (α = 0.050). RESULTS: For µTBS, significant differences were identified for the factors "solutions" (p = 0.002), "aging" (p = 0.017), and interaction of the two factors (p = 0.002). In the absence of aging, higher µTBS was observed for the group 0.5% Nisin. In the presence of aging, all groups showed similar µTBS values. All Nisin concentrations were effective in inhibiting the growth of S. mutans. Endogenous MMP activity was more significantly inhibited using 0.5% and 1.0% Nisin (p < 0.050). CONCLUSION: 0.5% and 1.0% Nisin solutions do not adversely affect resin-dentin bond strength and exhibit a potential bactericidal effect against S. mutans. Both concentrations effectively reduce endogenous gelatinolytic activity within the hybrid layer. CLINICAL RELEVANCE: The use of 0.5% and 1.0% Nisin solutions for dentin pretreatment potentially contributes to preserving the adhesive interface, increasing the longevity of composite restorations.


Assuntos
Colagem Dentária , Nisina , Humanos , Nisina/farmacologia , Nisina/análise , Adesivos/análise , Dentina/química , Antibacterianos/farmacologia , Resinas Compostas/química , Resistência à Tração , Adesivos Dentinários/química , Cimentos de Resina/análise , Teste de Materiais
10.
Lab Chip ; 24(6): 1648-1657, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38291999

RESUMO

Human dentin is a highly organized dental tissue displaying a complex microarchitecture consisting of micrometer-sized tubules encased in a mineralized type-I collagen matrix. As such, it serves as an important substrate for the adhesion of microbial colonizers and oral biofilm formation in the context of dental caries disease, including root caries in the elderly. Despite this issue, there remains a current lack of effective biomimetic in vitro dentin models that facilitate the study of oral microbial adhesion by considering the surface architecture at the micro- and nanoscales. Therefore, the aim of this study was to develop a novel in vitro microfabricated biomimetic dentin surface that simulates the complex surface microarchitecture of exposed dentin. For this, a combination of soft lithography microfabrication and biomaterial science approaches were employed to construct a micropitted PDMS substrate functionalized with mineralized type-I collagen. These dentin analogs were subsequently glycated with methylglyoxal (MGO) to simulate dentin matrix aging in vitro and analyzed utilizing an interdisciplinary array of techniques including atomic force microscopy (AFM), elemental analysis, and electron microscopy. AFM force-mapping demonstrated that the nanomechanical properties of the biomimetic constructs were within the expected biological parameters, and that mineralization was mostly predominated by hydroxyapatite deposition. Finally, dual-species biofilms of Streptococcus mutans and Candida albicans were grown and characterized on the biofunctionalized PDMS microchips, demonstrating biofilm-specific morphologic characteristics and confirming the suitability of this model for the study of early biofilm formation under controlled conditions. Overall, we expect that this novel biomimetic dentin model could serve as an in vitro platform to study oral biofilm formation or dentin-biomaterial bonding in the laboratory without the need for animal or human tooth samples in the future.


Assuntos
Cárie Dentária , Dentina , Animais , Humanos , Idoso , Dentina/química , Biomimética , Microtecnologia , Biofilmes , Streptococcus mutans , Materiais Biocompatíveis , Colágeno
11.
Dent Mater ; 40(3): 520-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212175

RESUMO

OBJECTIVE: The aim of this study was to evaluate the remineralizing properties of ion-releasing restorative materials on pH cycling-induced carious dentin. METHODS: Fifty sound molars were freshly extracted. The occlusal surfaces were abraded using water-cooled sandpaper (800 grit). The residual crowns were embedded in self-cured acrylic resin with the flat dentin surface exposed. A mesio-distal trench was created using a calibrated 0.5 mm deep occlusal reduction burr, and artificial dentin caries were generated by pH cycling. Then, teeth were randomly assigned to five groups according to the ion-releasing material used. For each sample, micro-CT acquisitions were performed at various intervals. Remineralization was assessed by mean gray value (MGV) measurements after registration and segmentation of the region of interest with 3D Slicer software. One-way repeated-measures ANOVA followed by Tukey's post hoc test was used to investigate the difference in MGVs among the various groups. RESULTS: Only Cention Forte showed significantly increased MGVs after 4 weeks compared to demineralized dentin. MGVs were higher, but not significantly, after placement of the restorative materials, including in the resin composite control group. These results can be explained by the radiopacity of the materials. SIGNIFICANCE: Cention Forte, the material with the highest radiopacity, showed a significant increase in the MGVs of artificially carious dentin after 4 weeks. However, the study of dentin remineralization by micro-CT could be impacted by the radiopacity of the restorative materials used. The relevance of this examination for the study of dentinal remineralization should be investigated.


Assuntos
Cárie Dentária , Cimentos de Ionômeros de Vidro , Humanos , Cimentos de Ionômeros de Vidro/química , Microtomografia por Raio-X , Materiais Dentários/química , Cárie Dentária/terapia , Resinas Compostas/química , Dentina/química , Teste de Materiais
12.
Int J Nanomedicine ; 19: 1-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38179219

RESUMO

Objective: This study was to investigate a novel antibacterial biomimetic mineralization strategy for exploring its potential application for root canal disinfection when stabilized cerium oxide was used. Material and Methods: A biomimetic mineralization solution (BMS) consisting of cerium nitrate and dextran was prepared. Single-layer collagen fibrils, collagen membranes, demineralized dentin, and root canal system were treated with the BMS for mineralization. The mineralized samples underwent comprehensive characterization using various techniques, including transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), selected-area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and micro-CT. Additionally, the antimicrobial properties of the BMS and the remineralized dentin were also analyzed with broth microdilution method, live/dead staining, and SEM. Results: Cerium ions in the BMS underwent a transformation into cerium oxide nanoparticles, which were deposited in the inter- and intra-fibrillar collagen spaces through a meticulous bottom-up process. XPS analysis disclosed the presence of both Ce (III) and Ce (IV) of the generated cerium oxides. A comprehensive examination utilizing SEM and micro-CT identified the presence of cerium oxide nanoparticles deposited within the dentinal tubules and lateral canals of the root canal system. The BMS and remineralized dentin exhibited substantial antibacterial efficacy against E. faecalis, as substantiated by assessments involving the broth dilution method and live/dead staining technique. The SEM findings revealed the cell morphological changes of deceased E. faecalis. Conclusion: This study successfully demonstrated antibacterial biomimetic mineralization as well as sealing dentinal tubules and lateral branches of root canals using cerium nitrate and dextran. This novel biomimetic mineralization could be used as an alternative strategy for root canal disinfection.


Assuntos
Cério , Cavidade Pulpar , Dentina/química , Desinfecção , Dextranos , Cério/farmacologia , Microscopia Eletrônica de Varredura , Colágeno , Antibacterianos/farmacologia
13.
J Biomed Mater Res B Appl Biomater ; 112(1): e35333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792302

RESUMO

Flavan-3-ol monomers are the building blocks of proanthocyanidins (PACs), natural compounds from plants shown to mediate specific biologic activities on dentin. While the stereochemistry of the terminal flavan-3-ols, catechin (C) versus epicatechin (EC), impacts the biomechanical properties of the dentin matrix treated with oligomeric PACs, structure-activity relationships driving this bioactivity remain elusive. To gain insights into the modulatory role of the terminal monomers, two highly congruent trimeric PACs from Pinus massoniana only differing in the stereochemistry of the terminal unit (Trimer-C vs. Trimer-EC) were prepared to evaluate their chemical characteristics as well as their effects on the viscoelasticity and biostability of biomodified dentin matrices via infrared spectroscopy and multi-scale dynamic mechanical analyses. The subtle alteration of C versus EC as terminal monomers lead to distinct immediate PAC-trimer biomodulation of the dentin matrix. Nano- and micro-dynamic mechanical analyses revealed that Trimer-EC increased the complex moduli (0.51 GPa) of dentin matrix more strongly than Trimer-C (0.26 GPa) at the nanoscale length (p < 0.001), whereas the reverse was found at the microscale length (p < .001). The damping capacity (tan δ) of dentin matrix decreased by 70% after PAC treatment at the nano-length scale, while increased values were found at the micro-length scale (~0.24) compared to the control (0.18 ; p < .001). An increase in amide band intensities and a decrease of complex moduli was observed after storage in simulated body fluid for both Trimer-C and Trimer-EC modified dentin. The stereochemical configuration of the terminal monomeric units, C and EC, did not impact the chemo-mechanical stability of dentin matrix.


Assuntos
Catequina , Proantocianidinas , Flavonoides/farmacologia , Flavonoides/análise , Proantocianidinas/farmacologia , Proantocianidinas/análise , Proantocianidinas/química , Catequina/farmacologia , Dentina/química
14.
J Esthet Restor Dent ; 36(3): 511-519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059691

RESUMO

OBJECTIVE: To evaluate the optical properties and the relative translucency parameter of Ceramill ZI White (3Y-TZP) and Ceramill Zolid FX White (5Y-PSZ) zirconia ceramic systems and compare them with those of the bovine dentin and enamel/dentin structures. MATERIALS AND METHODS: 3Y-TZP and 5Y-PSZ zirconia ceramic systems were evaluated. A 0.5-mm-thick 3Y-TZP (3Y-NC.5), 0.5-mm-thick (5Y-NC.5), and 1.4-mm-thick (5Y-C.14) were used. A 0.5-mm-thick dentin specimens and 1.4-mm-thick enamel/dentin specimens (n = 5) were obtained from anterior bovine maxillary teeth. Scattering, absorption, transmittance, and albedo coefficient were calculated using Kubelka-Munk's model. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney tests (p < 0.001), and goodness-of-fit coefficient (GFC). Relative translucency parameter differences were evaluated using translucency thresholds. RESULTS: Reflectance, scattering, absorption, and transmittance properties were wavelength dependent. Good matches (GFC ≥ 0.999) in spectral reflectance were observed between 0.5-mm-thick dentin and 1.4-mm-thick enamel/dentin, and 3Y-NC.5 and 5Y-NC.5. Scattering was the main optical extinction process during light interaction with zirconia and dental structures, as indicated by albedo coefficient. Translucency differences were acceptable only for 3Y-NC.5 and the dentin structure, and 5Y-C.14 and the enamel/dentin structure. CONCLUSIONS: Optical properties of 3Y-TZP and 5Y-PSZ dental zirconia differed from each other and from bovine dental structures. Nevertheless, 3Y-TZP showed similar relative translucency parameter to bovine dentin. CLINICAL SIGNIFICANCE: To achieve the best esthetic results in restorative dentistry, it is crucial for clinicians to know about the optical properties of 3Y-TZP and 5Y-PSZ and to be able to compare these properties with those of dental structures.


Assuntos
Cerâmica , Zircônio , Bovinos , Animais , Teste de Materiais , Zircônio/química , Dentina/química , Propriedades de Superfície , Materiais Dentários
15.
Dent Mater ; 40(2): 236-243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981512

RESUMO

OBJECTIVE: to evaluate the effect a glass ionomer cement (GIC) containing hydroxyapatite (HAp) or calcium silicate (CaSi) particles on mineral content and mechanical properties of demineralized dentin. Ion release and compressive strength (CS) of the cements were also evaluated. METHODS: GIC (Fuji 9 Gold Label, GC), GIC+ 5%HAp and GIC+ 5%CaSi (by mass) were evaluated. Ion release was determined by induced coupled plasma optical emission spectroscopy (Ca2+/Sr2+) or ion-specific electrode (F-) (n = 3). A composite (Filtek Z250, 3 M ESPE) was used as control in remineralization tests. Demineralized dentin discs were kept in contact with materials in simulated body fluid (SBF) at 37 °C for eight weeks. Mineral:matrix ratio (MMR) was determined by ATR-FTIR spectroscopy (n = 5). Dentin hardness (H) and elastic modulus (E) were determined by nanoindentation (n = 10). CS was tested after 24 h and 7d in deionized water (n = 12). Data were analyzed by ANOVA/Tukey test (α = 0.05). RESULTS: Ca2+ and Sr2+ release was higher for the modified materials (p < 0.05). Only GIC+ 5%HAp showed higher F- release than the control (p < 0.05). All groups showed statistically significant increases in MMR, with no differences among them after 8 weeks (p > 0.05). No differences in dentin H or E were observed among groups (p > 0.05). HAp-modified GIC showed increased initial CS, while adding CaSi had the opposite effect (p < 0.05). After 7 days, GIC+ 5%CaSi presented lower CS in relation to control and GIC+ 5%HAp (p < 0.05). SIGNIFICANCE: GIC modification with HAp or CaSi affected CS and increased ion release; however, none of the groups showed evidence of dentin remineralization in comparison to the negative control.


Assuntos
Cálcio , Cimentos de Ionômeros de Vidro , Cálcio/análise , Teste de Materiais , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Durapatita/farmacologia , Durapatita/química , Dentina/química
16.
Dent Mater ; 40(2): 160-172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951748

RESUMO

OBJECTIVE: This study aims to synthesize novel chitosan nanoparticles loaded with an amelogenin-derived peptide QP5 (TMC-QP5/NPs), investigate their remineralization capability and inhibitory effects on endogenous matrix metalloproteinases (MMPs), and evaluate the dentin bonding properties of remineralized dentin regulated by TMC-QP5/NPs. METHODS: TMC-QP5/NPs were prepared by ionic crosslinking method and characterized by dynamic light scattering method, scanning electron microscopy, transmission electron microscope, atomic force microscope, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The encapsulation and loading efficiency of TMC-QP5/NPs and the release of QP5 were examined. To evaluate the remineralization capability of TMC-QP5/NPs, the mechanical properties, and the changes in structure and composition of differently conditioned dentin were characterized. The MMPs inhibitory effects of TMC-QP5/NPs were explored by MMP Activity Assay and in-situ zymography. The dentin bonding performance was detected by interfacial microleakage and microshear bond strength (µSBS). RESULTS: TMC-QP5/NPs were successfully synthesized, with uniform size, good stability and biosafety. The encapsulation and loading efficiency of TMC-QP5/NPs was respectively 69.63 ± 2.22% and 13.21 ± 0.73%, with a sustained release of QP5. TMC-QP5/NPs could induce mineral deposits on demineralized collagen fibers and partial occlusion of dentin tubules, and recover the surface microhardness of dentin, showing better remineralization effects than QP5. Besides, TMC-QP5/NPs significantly inhibited the endogenous MMPs activity. The remineralized dentin induced by TMC-QP5/NPs exhibited less interfacial microleakage and higher µSBS, greatly improved dentin bonding. SIGNIFICANCE: This novel peptide-loaded chitosan nanoparticles improved resin-dentin bonding by promoting dentin remineralization and inactivating MMPs, suggesting a promising strategy for optimizing dentin adhesive restorations.


Assuntos
Quitosana , Nanopartículas , Quitosana/farmacologia , Biomimética , Nanopartículas/química , Peptídeos/farmacologia , Dentina/química , Metaloproteinases da Matriz
17.
J Mech Behav Biomed Mater ; 150: 106225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000163

RESUMO

Human dentin is known for its hierarchical structure through long-term evolution. Dental caries, embodied by dentin demineralization, is ascribed to a different reaction between peritubular dentin (PTD) and intertubular dentin (ITD) to acid dissolution. This study sheds light on the adverse effect of acid on dentin in terms of degradation of its fracture toughness (FT) due to the acid dissolution-induced corrosion of PTD. A scanning electronic microscope (SEM) is utilized to visualize the difference between normal and acid-treated dentin subjected to the same loading method in terms of crack propagation performance. 3D simulative representative volume elements (RVEs) are developed to analyze the effect of PTD missing on the performance of dentin fracture resistance (FR). The results indicate PTD plays a significant role in enhancing dentin FR capability and thus reveals the importance of structural integrity for dentin.


Assuntos
Cárie Dentária , Dentina , Humanos , Dentina/química , Corrosão
18.
Dent Mater ; 40(2): 254-266, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989605

RESUMO

OBJECTIVES: In light of the constantly flowing saliva, anti-caries remineralization agents are inclined to be taken away. Owing to their limited residence time, the remineralization effect is not as desirable as expected. Hence, our study aimed to synthesize a novel peptide (DGP) with high affinity to both collagen fibrils and hydroxyapatite, and investigated its dentin remineralization efficacy in vitro and anti-caries capability in vivo. METHODS: DGP was synthesized through Fmoc solid-phase reaction. The binding ability and interaction mechanism of DGP to demineralized dentin were investigated. Dentin specimens were demineralized, then treated with DGP and deionized water respectively. The specimens were incubated in artificial saliva and in-vitro remineralization effectiveness was analyzed after 14 days. The rat caries model was established to further scrutinize the in-vivo efficacy of caries prevention. RESULTS: DGP possesses an enhanced adhesion force of 12.29 ± 1.12 nN to demineralized dentin. The favorable adsorption capacity is ascribed to the stable hydrogen bonds between S2P-101 and ASP-100 of DGP and GLY33 and PRO-16 of collagen fibers. Abundant mineral deposits and remarkable tubule occlusion were observed in the DGP group. DGP-treated dentin obtained notable microhardness recovery and higher mineral content after a 14-day remineralization regimen. DGP also demonstrated potent caries prevention in vivo, with substantially fewer carious lesions and significantly lower Keyes scoring. SIGNIFICANCE: DGP proves to possess a high affinity to demineralized dentin regardless of saliva flowing, thus enhancing remineralization potency significantly in vitro and in vivo, potential for dental caries prevention and combatting initial dentin caries clinically.


Assuntos
Cárie Dentária , Humanos , Cárie Dentária/tratamento farmacológico , Cárie Dentária/patologia , Cariostáticos , Dentina/química , Minerais , Colágeno/química , Remineralização Dentária
19.
Arch Oral Biol ; 158: 105868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070323

RESUMO

OBJECTIVES: To investigate the chemical and mechanical properties of intraradicular dentin submitted to radiotherapy. MATERIALS AND METHODS: Sixteen mandibular incisors were divided into two groups (n = 8): non-irradiated and irradiated. The irradiated teeth were obtained from head and neck radiotherapy patients, with a total dose ranging from 70.2 to 72 Gy divided into 1.8 Gy daily. After sample preparation, intraradicular dentin slices of each root third were evaluated by Raman spectroscopy, energy dispersive spectroscopy and Knoop microhardness test. Data were analyzed by Two-way ANOVA and Tukey's test (α = 0.05). RESULTS: In Raman spectroscopy, carbonate and amide III showed a significant difference for irradiation and third (carbonate p = 0.021 and p < 0.001; amide III p < 0.001 and p = 0.001, respectively). For amide I, there was a significant difference for third (p < 0.001). For carbonate/mineral ratio, there was a significant difference for irradiation (p = 0.0016) and third (p < 0.001), with the irradiated middle third showing the lowest values. For amide I/amide III ratio, there was a significant difference for irradiation (p = 0.005) in the cervical third. In energy dispersive spectroscopy, carbon (p = 0.004; p = 0.020), phosphorus (p < 0.001; p = 0.009) and calcium (p = 0.008; p = 0.007) showed differences for irradiation and third, with the irradiated groups presenting lower values in cervical and middle thirds. For calcium/phosphorus ratio, there was a significant difference for irradiation (p < 0.001) in cervical and middle thirds. Regarding microhardness, there was a significant difference for irradiation (p < 0.001), with all irradiated groups showing lower microhardness values. CONCLUSIONS: The radiotherapy altered the chemical and mechanical properties of intraradicular dentin, mainly in the cervical and middle root thirds.


Assuntos
Cálcio , Dentina , Humanos , Dentina/química , Cálcio/análise , Incisivo , Carbonatos/análise , Fósforo/análise , Amidas/análise , Teste de Materiais
20.
Dent Mater ; 40(2): 327-339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065798

RESUMO

OBJECTIVES: Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS: Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS: Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE: Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.


Assuntos
Quitosana , Colagem Dentária , Ácido Edético/análogos & derivados , Desmineralização do Dente , Humanos , Ácido Edético/química , Cimentos Dentários , Colágeno/química , Antibacterianos , Dentina/química , Minerais , Água , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química , Resistência à Tração , Cimentos de Resina/química , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...